If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4f^2+48f+68=0
a = -4; b = 48; c = +68;
Δ = b2-4ac
Δ = 482-4·(-4)·68
Δ = 3392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3392}=\sqrt{64*53}=\sqrt{64}*\sqrt{53}=8\sqrt{53}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{53}}{2*-4}=\frac{-48-8\sqrt{53}}{-8} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{53}}{2*-4}=\frac{-48+8\sqrt{53}}{-8} $
| 3x-1/4-x+2/2=1/4 | | 5x-8=-6x+14 | | a2=64 | | 1200+45n=1800=60n | | (x-3)^2-(3x-2)^2=0 | | 8x(-8x)=9 | | 2x-(x/x-1)=1+(1/x-1) | | 3u^2–12u=111 | | X+x.3=120 | | 8x-(-8)=9 | | 3u2–12u=111 | | 2x^2+x+8=x^2-5 | | 2x^2+8=x^2-5 | | 10x=2x+3 | | 3(2^x+1)-2^x+2^2+5=0 | | 94x/x+3=0 | | 6(2x+4)=4(3x | | 9-1(2x-6)=7x | | 2+x=7/8x-15 | | 8x+3-12+4=0 | | 4^x=-12 | | 3n/4+1=10 | | 16x2-81=0 | | 3,01y+2=-0,99y-2 | | (3x+10)+(2x-10)=180 | | (3x)²=1 | | 3,01y+2=0,99y-2 | | (X)+2x+3=90 | | 4^x+1=25 | | 6,2-1,8y=-11,8+7,2y | | 1100=10^x | | 6,2-1,8y=-11,8+7,2 |